On the behaviour of the laminar boundary-layer equations of mixed convection near a point of zero skin friction

By ROLAND HUNT AND GRAHAM WILKS
Department of Mathematics, University of Strathclyde, Glasgow G1 1XH

(Received 9 November 1979)

Abstract

The boundary-layer equations of mixed convection are examined in the vicinity of separation. The correlation between the uniform wall temperature case and that of compressible boundary layer flow is outlined. Goldstein-Stewartson-Buckmaster theory is thus appropriate and associated indeterminacies in the theory are evaluated from a numerical integration. The case of uniform heat flux at the wall is then examined theoretically. Significantly it is concluded that the original Goldstein-Stewartson theory is sufficient to describe the structure of the singularity at separation in this case. Indeterminacies associated with the theory are determined via a reconciliation between analytical and numerical representation of skin friction and heat transfer coefficients near separation.

1. Introduction

The foundations for the appreciation of the behaviour of the laminar incompressible boundary-layer equations at a point x_{s} of vanishing skin friction were laid down in the classic paper of Goldstein (1930). It was not until Goldstein (1948), however, that a level of accord between analysis and numerical integration of the governing momentum equation was demonstrated. This was achieved by developing the tentative analysis of 1930 on the assumption that the first compatibility condition for the absence of singularities was satisfied. As a result theoretical and numerical evidence of skin friction behaviour as $\left(x_{s}-x\right)^{\frac{1}{2}}$ was reconciled. Anomalies in the analysis associated with the requirement of algebraic behaviour at large η for coefficient functions in the Goldstein expansion were settled by Stewartson (1958). Here $\eta=y^{\prime} / 2^{\frac{1}{2}}\left(x_{s}-x\right)^{\frac{1}{1}}$, where y^{\prime} is a dimensionless distance measured normal to the wall. Further work by Terrill (1960) confirmed the validity of the Stewartson modifications and consequently the structure about the singularity in the incompressible case is regarded as fully understood.

The structure about the singularity in flows governed by the coupled boundarylayer equations of momentum and energy has up to now proved less tractable. Discussion of two relevant circumstances have appeared in the literature, namely separation in compressible boundary layer flow and separation in mixed convection flow. The former case was first examined from a theoretical standpoint by Stewartson (1962). Following an analysis closely patterned on his earlier work on the incompressible case he was led to the conclusion that a general compressible laminar boundary layer can develop a singularity at a point of zero skin friction only if the heat transfer at that point is also zero. At variance with this conclusion was subsequent unpublished numerical evidence of singular behaviour at separation (private communication from
P. G. Williams, University College London). This anomaly was ultimately resolved by Buckmaster (1970) who demonstrated a complicated but self-consistent expansion involving new logarithmic terms and their products which generated a skin friction representation vanishing as $\left(x_{s}-x\right)^{\frac{1}{2}} \ln \left(x_{s}-x\right)$. More recently Davies \& Walker (1977) have undertaken a thorough numerical investigation of compressible boundary layer separation. Despite some slight reservations over the accuracy of their results in the immediate vicinity of separation it does appear that the Goldstein-StewartsonBuckmaster theory satisfactorily accounts for the skin friction behaviour for both hot and cold walls.

Separation in mixed convection, on the other hand, was first discussed by Merkin (1969), who examined the effect of opposing buoyancy forces on the boundary layer flow over a uniform temperature semi-infinite vertical flat plate in a uniform stream. His numerical evidence was indicative of a square root singularity at separation. Moreover an analytic formulation, appropriate at separation in this context, yields equations which almost exactly coincide with those first addressed by Stewartson (1962). Thus Merkin's results in fact provided the first reported contradiction of Stewartson's original conjecture. Naturally these results should therefore be compatible with the Buckmaster theory and its associated expansions. By amending the uniform temperature constraint to that of a uniform heat flux at the plate Wilks (1974) sought to provide additional information concerning circumstances involving irregularities at a point of zero skin friction. Preliminary examination of the results suggested, surprisingly, the presence of a three fifths singularity at separation. Subsequent computations (Davies \& Walker) have indicated the sensitivity of the numerical scheme to the form of modelling of the uniform heat flux boundary condition. When this is accounted for the familiar square root behaviour is recovered. No theoretical study of these latter circumstances has as yet been reported.

From the preceding discussion it may be conjectured that recourse to Buckmaster forms of expansion is in some sense a property of the coupling of the governing momentum and energy equations. Is it inevitable that such a complicated structure will be required to account for irregularities encountered in numerical integration to separation in such circumstances? In the work that follows we suggest that this need not necessarily be the case. We are led to this conclusion on the basis of an analytic examination about the separation occurring in the uniform heat flux problem. Significantly, it is indicated that for this problem a Goldstein-Stewartson expansion will apparently suffice so long as it is again assumed, as in the incompressible case, that the first condition for the absence of singularities is satisfied. No complications involving non-terminating sequences of coefficient functions are encountered and progress may hence be made towards more explicit representations of the higher order coefficient functions.

In order to substantiate the above conclusion a further numerical solution of the mixed convection separation problems was undertaken, employing an alternative method of solution to that used previously. A distinction in the nature of the singularities in the two problems of uniform temperature and uniform heat flux was immediately apparent. The numerical evidence clearly indicated that the singularity associated with the uniform heat flux integration was of a less complicated nature than that occurring in the constant temperature integration. This is indeed only to be expected if the theoretical predictions are valid. An indeterminacy appearing in the
theoretical representations of skin friction and heat transfer coefficients may be estimated either through a comparison with the numerical values of skin friction coefficient or through a comparison with the numerical values of heat transfer coefficient. The level of agreement between the two independent estimates of this indeterminacy is taken as confirmation that the structure at separation for the constant heat flux problem has been satisfactorily accounted for by the Goldstein-Stewartson expansions.

2. The equations of mixed convection

The flows envisaged in this paper involve the flow of a uniform stream U along a semi-infinite flat plate extending vertically downwards with its leading edge horizontal. Heat is supplied to the flow by diffusion and convection from the plate either as a result of (a) a uniform temperature T_{1} at the plate or (b) a uniform heat flux q from the surface. This heating, relative to the surrounding ambient temperature T_{0}, generates buoyancy forces which oppose the free stream and ultimately lead to separation of the boundary layer formed from the leading edge. The governing equations, incorporating the assumptions that changes in density are significant only in producing buoyancy forces and that viscous dissipation may be neglected, are

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{1}\\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-g \beta\left(T-T_{0}\right)+\nu \frac{\partial^{2} u}{\partial y^{2}} \tag{2}\\
u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\kappa \frac{\partial^{2} T}{\partial y^{2}} \tag{3}
\end{gather*}
$$

Here u and v are velocity components associated with increasing x and y respectively, where x measures distance along the plate from the leading edge $x=0$ and y is measured normally outwards from the plate; T is the temperature of the fluid and g the acceleration due to gravity, β the coefficient of thermal expansion, κ the thermometric conductivity and ν the kinematic viscosity are all taken as constant. Solution of (1)-(3) is required subject to boundary conditions

$$
\left.\begin{array}{l}
u=v=0 \quad \text { on } \quad y=0, \tag{4}\\
u \rightarrow U, \quad T \rightarrow T_{0} \quad \text { as } \quad y \rightarrow \infty, \\
u=U, \quad T=T_{0} \quad \text { at } \quad x=0 ;
\end{array}\right\}, \begin{aligned}
& \text { (a) } T=T_{1} \\
& \text { (b) } \left.\frac{\partial T}{\partial y}=\frac{-q}{k}\right\} \quad \text { on } y=0,
\end{aligned}
$$

where k is thermal conductivity.
Merkin (1969) and Wilks (1974) have demonstrated the relevance of characterizing non-dimensional coordinates in formulating each of the problems under discussion, namely

$$
\begin{align*}
& \text { (a) } \bar{\xi}=\frac{g \beta\left(T-T_{0}\right) x}{U^{2}}=\frac{x}{l_{M}}, \tag{5}\\
& \text { (b) } \tilde{\xi}=\left(\frac{2^{3} g^{2} \beta^{2} q^{2} \nu}{5^{2} k^{2} U^{5}}\right)^{\frac{1}{s}} x=\frac{x}{l_{W}} . \tag{6}
\end{align*}
$$

Each co-ordinate reflects the local relative importance of viscous and buoyancy forces. Near the leading edge the dominant feature of the flows, is the viscous retardation of the free stream U. Accordingly, transformations which render equations (1)-(3) amenable to numerical integration are

$$
\left.\begin{array}{rlrl}
\text { (a) } \psi & =(2 \nu U x)^{\frac{1}{2}} \bar{f}(\bar{\xi}, \zeta), & & \text { (b) } \psi=(2 \nu U x)^{\frac{1}{2}} f(\tilde{\xi}, \zeta), \\
T-T_{0} & =\left(T_{1}-T_{0}\right) \bar{\theta}(\bar{\xi}, \zeta), & T-T_{0}=\frac{-q}{k}\left(\frac{2 \nu x}{U}\right)^{\frac{1}{2}} \hat{\theta}(\tilde{\xi}, \zeta),
\end{array}\right\}
$$

where $\zeta=y(U / 2 \nu x)^{\frac{1}{2}}$. For brevity the associated equations and boundary conditions are omitted-they are readily available in the references cited. The transformations are quoted, however, to clarify certain correlations which are later required in assessing compatibility between numerical results and theory.

To examine the behaviour near separation, equations (1)-(3) are first non-dimensionalized and then transformed in a manner analogous to that of Goldstein (1948). Taking

$$
x^{\prime}=\frac{\left(x_{s}-x\right)}{l}, \quad y^{\prime}=\frac{R^{\frac{1}{2}} y}{l}, \quad \psi^{\prime}=\frac{R^{\frac{1}{2}} \psi}{l U}, \quad u^{\prime}=\frac{u}{U}, \quad v^{\prime}=\frac{R^{\frac{1}{2}} v}{\bar{U}}
$$

together with

$$
\begin{equation*}
\text { (a) } \quad \theta^{\prime}=\frac{T-T_{0}}{T_{1}-T_{0}}, \quad \text { (b) } \quad \theta^{\prime}=\frac{T-T_{0} \cdot R^{\frac{1}{2}}}{-q / k . l}, \tag{8}
\end{equation*}
$$

leads to the non-dimensional equations

$$
\begin{gather*}
-\frac{\partial u^{\prime}}{\partial x^{\prime}}+\frac{\partial v^{\prime}}{\partial y^{\prime}}=0, \tag{9}\\
-u^{\prime} \frac{\partial u^{\prime}}{\partial x^{\prime}}+v^{\prime} \frac{\partial u^{\prime}}{\partial y^{\prime}}=\mp \theta^{\prime}+\frac{\partial^{2} u^{\prime}}{\partial y^{\prime 2}}, \tag{10}\\
-u^{\prime} \frac{\partial \theta^{\prime}}{\partial x^{\prime}}+v^{\prime} \frac{\partial \theta^{\prime}}{\partial y^{\prime}}=\frac{1}{\operatorname{Pr}} \frac{\partial^{2} \theta^{\prime}}{\partial y^{\prime 2}} \tag{11}
\end{gather*}
$$

where Pr is the Prandtl number $\nu / \kappa, R$ is the Reynolds number $U l / \nu$ and l is interpreted as follows:
for (a) $\quad l \equiv l_{M}$ and the minus sign persists in equation (10),
for (b) $\quad l \equiv \frac{2}{5^{\frac{2}{3}}} l_{W}$ and the plus sign persists in equation (10).
The transformations appropriate to an initial profile displaying a double zero at the origin are

$$
\begin{equation*}
\xi=\left(x^{\prime}\right)^{\frac{1}{t}}, \quad \eta=\frac{y^{\prime}}{2^{\frac{1}{2}} \xi}, \quad \psi^{\prime}=2^{\frac{3}{2}} \xi^{3} f(\xi, \eta), \quad \theta^{\prime}=\theta(\xi, \eta) . \tag{12}
\end{equation*}
$$

The resulting equations are

$$
\begin{gather*}
\frac{\partial^{3} f}{\partial \eta^{3}}-3 f \frac{\partial^{2} f}{\partial \eta^{2}}+2\left(\frac{\partial f}{\partial \eta}\right)^{2}+\xi\left\{\frac{\partial^{2} f}{\partial \xi} \frac{\partial f}{\partial \eta}-\frac{\partial^{2} f}{\partial \eta^{2}} \frac{\partial f}{\partial \xi}\right\} \mp \theta=0, \tag{13}\\
\frac{1}{\operatorname{Pr}} \frac{\partial^{2} \theta}{\partial \eta^{2}}-3 f \frac{\partial \theta}{\partial \eta}+\xi\left\{\frac{\partial f}{\partial \eta} \frac{\partial \theta}{\partial \xi}-\frac{\partial f}{\partial \xi} \frac{\partial \theta}{\partial \eta}\right\}=0 \tag{14}
\end{gather*}
$$

where once again - and + of (13) refers to (a) and (b) respectively. In keeping with previous work on this topic we shall restrict ourselves to the case $\operatorname{Pr}=1$. Boundary conditions play an important role in subsequent developments and their discussion is delayed to later paragraphs.

3. The constant-temperature case (a)

Although Stewartson's resolution of the behaviour at incompressible separation invalidated Goldstein's original assumption of a power series representation of the separation velocity profile, the non-analyticity is only introduced in higher order terms. Accordingly it is still helpful, as a preliminary boundary condition, to require that the solution of the boundary layer equations evolve in some sense towards the separation profiles of velocity and temperature expressed as series, and to deal with anomalies as and when they arise. In non-dimensional terms this implies profiles satisfying $\left(\partial u^{\prime} \partial y^{\prime}\right)_{y^{\prime}=0}=0$ and $\left(\theta^{\prime}\right)_{y^{\prime}=0}=b_{0}=1$ at $x^{\prime}=0$, namely

$$
\begin{align*}
& u^{\prime}=a_{2} y^{\prime 2}+a_{3} y^{\prime 3}+a_{4} y^{\prime 4}+\ldots, \tag{15}\\
& \theta^{\prime}=1+b_{1} y^{\prime}+b_{2} y^{\prime 2}+b_{3} y^{\prime 3}+\ldots \tag{16}
\end{align*}
$$

Note that the first condition for the absence of a singularity in the solution of (10) at $x^{\prime}=0$ is then

$$
\begin{equation*}
2 a_{2}-1=0 \tag{17}
\end{equation*}
$$

In view of (15) and (16) it is natural, as a first attempt, to seek series solutions of (13) and (14) in integral powers of ξ,

$$
\begin{gather*}
f(\xi, \eta)=\sum_{n=0}^{\infty} f_{n}(\eta) \xi^{n} \tag{18}\\
\theta(\xi, \eta)=\sum_{n=0}^{\infty} \theta_{n}(\eta) \xi^{n} \quad(n=0,1,2, \ldots) \tag{19}
\end{gather*}
$$

and require coefficient functions f_{n}, θ_{n} to behave algebraically at large η, i.e. expect that

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} \frac{f_{n}^{\prime}}{\eta^{n+2}}=2^{\frac{1}{2} n} a_{n+2}, \quad \lim _{\eta \rightarrow \infty} \frac{\theta_{n}}{\eta^{n}}=2^{\frac{1}{2} n} b_{n}, \tag{20}
\end{equation*}
$$

where, from now on, the prime will imply $d / d \eta$. Remaining boundary conditions reflecting impermeability, no slip and uniform temperature at the plate are simply

$$
\begin{equation*}
f_{n}(0)=f_{n}^{\prime}(0)=0 ; \quad \theta_{0}(0)=1 ; \quad \theta_{n}(0)=0 \quad(n \geqslant 1) . \tag{21}
\end{equation*}
$$

The equations for f_{0}, θ_{0} now coincide with those of Stewartson (1962) for his f_{0}, g_{0} except that $1+g_{0}$ is replaced by θ_{0} in the momentum equation.

The equivalence with a particular case of Stewartson's work is complete, as far as further developments are concerned, when it is recognized that $\theta_{0} \equiv 1$ is the only acceptable solution of the energy equation under (21). The solution for f_{0} with a double zero at the origin and satisfying the first compatibility condition (17) is then $f_{0}=\frac{1}{6} \eta^{3}$. The discussion for higher order terms must now exactly parallel that of Buckmaster (1970). The arguments demonstrate the coefficient functions (18) and (19) as incomplete and indicate the need to introduce coefficient functions $f_{n}(\xi, \eta)$ and $\theta_{n}(\xi, \eta)(n \geqslant 1)$
whose ξ dependence is logarithmic. The development of the representation of f_{n}, θ_{n} is lengthy and somewhat involved and the reader is referred to the original papers for details. Here we shall simply examine the possibility of a satisfactory reconciliation between the numerical solution and the representations outlined in those papers. In particular we examine the implications with regards to the basic flow parameters, namely the skin friction and heat transfer coefficients. Near separation, for skinfriction coefficient correlation

$$
\begin{align*}
\tau_{w}=\frac{1}{(2 \bar{\xi})^{\frac{1}{2}}}\left(\bar{f}_{\xi 6}\right)_{\zeta=0} & =2^{\frac{1}{2} \xi} \xi\left(f_{\eta \eta}\right)_{\eta=0} \\
& =2 \frac{1}{2} \xi^{2}\left(2 \alpha_{10} \ln \xi+2 \alpha_{11}+2 \alpha_{12} \ln |\ln \xi|+2 \alpha_{13} \ln |\ln \xi| / \ln \xi+\ldots\right) \tag{22}
\end{align*}
$$

and for heat transfer correlation

$$
\begin{align*}
\bar{Q} & =\frac{-1}{\left(2 \overline{)^{\frac{1}{2}}}\right.}\left(\bar{\theta}_{\xi}\right)_{\xi=0}=\frac{-1}{2^{\frac{1}{2} \xi}}\left(\theta_{\eta}\right)_{\eta=0} \\
& =\frac{-1}{2^{\frac{1}{2}}}\left\{b_{1}-\xi K_{2}^{\prime}(0) b_{1}\left(2 \alpha_{10} \ln \xi+2 \alpha_{11}+2 \alpha_{12} \ln |\ln \xi|+2 \alpha_{13} \ln |\ln \xi| / \ln \xi+\ldots\right)\right\} \tag{23}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha_{10}=\frac{-2 \pi^{\frac{1}{2}}\left(-\frac{1}{4}\right)!b_{1}}{64\left(\frac{1}{4}!\right)^{3}}, \quad \alpha_{12}=(1-2 \ln 2) \alpha_{10} \\
& \alpha_{13}=\frac{-64\left(\frac{1}{4}!\right)^{3} \alpha_{12}^{2}}{2 \pi^{\frac{1}{2}}\left(-\frac{1}{4}\right)!b_{1}}, \quad K_{2}^{\prime}(0)=\frac{-2 \frac{1}{3} \pi^{\frac{3}{2}}}{8\left(\frac{1}{4}!\right)^{3}} \quad \text { (see appendix). } \tag{24}
\end{align*}
$$

The formulation implies $\xi=\left(\bar{\xi}_{s}-\bar{\xi}\right)^{\frac{1}{t}}$, where $\bar{\xi}_{s}$ denotes the separation value of $\bar{\xi}$. Knowledge of the left-hand sides of (22) and (23) is available from the numerical integration. Of the two indeterminacies b_{1}, α_{11} the former may be specifically evaluated from the numerical solution at separation. On the other hand α_{11} is chosen to reconcile (22) and (23) over a range of ξ.

4. The constant heat flux case (b)

In non-dimensional terms the significant boundary condition for this case is $\left(\partial \theta^{\prime} / \partial y^{\prime}\right)_{y^{\prime}=0}=b_{1}=1$. Assuming, in the first instance, the power series representation of separation profiles, (15) remains appropriate whilst the counterpart of (16) reads

$$
\begin{equation*}
\theta^{\prime}=b_{0}+y^{\prime}+b_{2} y^{\prime 2}+b_{3} y^{\prime 3}+\ldots \tag{25}
\end{equation*}
$$

Moreover the first compatibility condition for the absence of a singularity of (10) at $x^{\prime}=0$ now takes the slightly more general form

$$
\begin{equation*}
2 a_{2}+b_{0}=0 \tag{26}
\end{equation*}
$$

To reflect the implications of (16) and (25), and yet allow for the possible arising of anomalies due to their assumed form, we follow Stewartson (1962) and seek solutions of (13) and (14) as

$$
\begin{align*}
& f(\xi, \eta)=\sum_{n=0}^{\infty} f_{n}(\eta) \xi^{n}+\text { extra termsinvolving } \ln \xi \tag{27}\\
& \theta(\xi, \eta)=\sum_{n=0}^{\infty} \theta_{n}(\eta) \xi^{n}+\text { extra termsinvolving } \ln \xi \tag{28}
\end{align*}
$$

Appropriate boundary conditions are

$$
\begin{gather*}
f_{n}(0)=f_{n}^{\prime}(0)=0, \quad \lim _{\eta \rightarrow \infty} \frac{f_{n}^{\prime}}{\eta^{n+2}}=2^{\frac{1}{2} n} a_{n+2} \quad(n=0,1,2, \ldots), \tag{29}\\
\left.\theta_{1}^{\prime}(0)=2^{\frac{1}{2}}, \quad \theta_{n}^{\prime}(0)=0 \quad \text { for } \quad n \neq 1, \quad \lim _{\eta \rightarrow \infty} \frac{\theta_{n}}{\eta^{n}}=2^{\frac{1}{2}} b_{n} \quad(n=0,1,2, \ldots) \quad \text { (N.B. } b_{1} \equiv 1\right), \tag{30}
\end{gather*}
$$

unless it transpires that additional coefficient functions need to be introduced. Should this be the case then conditions as $\eta \rightarrow \infty$ are replaced by the requirement that coefficient function dependence on η should be algebraic for large η.
Equations for f_{0}, θ_{0} are

$$
\begin{gather*}
f_{0}^{\prime \prime \prime}-3 f_{0} f_{0}^{\prime \prime}+2 f_{0}^{\prime 2}+\theta_{0}=0 \tag{31}\\
\theta_{0}^{\prime \prime}-3 f_{0} \theta_{0}^{\prime}=0 \tag{32}
\end{gather*}
$$

The solution of (32) satisfying the boundary conditions is $\theta_{0} \equiv b_{0}$. The solution for f_{0} having a double zero at the origin and satisfying the first compatibility condition is

$$
\begin{equation*}
f_{0}=\frac{-b_{0} \eta^{3}}{6}=\frac{a_{2} \eta^{3}}{3} \tag{33}
\end{equation*}
$$

Experience of the numerical solution suggests that a_{2} may be expected to be positive.
Proceeding with the expansions (27) and (28) on the basis of (33) gives equations for f_{1}, θ_{1} as

$$
\begin{gather*}
f_{1}^{\prime \prime \prime}-a_{2} \eta^{3} f_{1}^{\prime \prime}+5 a_{2} \eta f_{1}^{\prime}-8 a_{2} \eta f_{1}=-\theta_{1} \tag{34}\\
\theta_{1}^{\prime \prime}-a_{2} \eta^{3} \theta_{1}^{\prime}+a_{2} \eta^{2} \theta_{1}=0 \tag{35}
\end{gather*}
$$

Equation (35) has as complementary functions η, and a function displaying exponential growth at large η. The required solution is therefore

$$
\begin{equation*}
\theta_{1}=2^{\frac{1}{2}} \eta \tag{36}
\end{equation*}
$$

With this solution for θ_{1} the solution of (34) displaying a double zero at the origin and algebraic behaviour at large η is

$$
\begin{equation*}
f_{1}=\alpha_{1}^{*} \eta^{2}-2^{\frac{1}{2}} \frac{\eta^{4}}{24} \tag{37}
\end{equation*}
$$

where α_{1}^{*} is the basic indeterminacy of the ensuing analysis. It is the counterpart of α_{11} of §3. The additional subscript is not required here as the developing solution no longer displays the inconsistencies that Buckmaster had to account for. The asterisk is used to highlight this point. The significant stage at which distinction can be made between the two cases occurs when examining acceptable solution for f_{2}, θ_{2}. Their governing equations are

$$
\begin{gather*}
f_{2}^{\prime \prime \prime}-a_{2} \eta^{3} f_{2}^{\prime \prime}+6 a_{2} \eta^{2} f_{2}^{\prime}-10 a_{2} \eta f_{2}=-\theta_{2}-\frac{1}{3} \alpha_{1}^{*} \cdot 2^{\frac{1}{2}} \cdot \eta^{4}-4 \alpha_{1}^{* 2} \eta^{2} \tag{38}\\
\theta_{2}^{\prime \prime}-a_{2} \eta^{3} \theta_{2}^{\prime}+2 a_{2} \eta^{2} \theta_{2}=2^{\frac{3}{2}} \alpha_{1}^{*} \eta^{2} . \tag{39}
\end{gather*}
$$

Note that, with the transformation $z=\left(2 a_{2}\right)^{\ddagger} \eta$, the left-hand side operators of f_{n}, θ_{n} may be reduced to the forms dealt with in the appendix. Thus the complementary functions of (39) each display exponential behaviour at large η. They can therefore
only appear in the solution as the combination [(constant) K_{2}]. However, since K_{2}^{\prime} remains finite at $\eta=0$, the boundary condition $\theta_{2}^{\prime}(0)=0$ leads to the conclusion that the constant multiplier must be identically zero. Accordingly, in contradistinction to the constant temperature case, K_{2} does not appear in the solution for θ_{2}, which here is simply

$$
\begin{equation*}
\theta_{2}=\frac{2^{\frac{1}{2}} \alpha_{1}^{*}}{a_{2}} . \tag{40}
\end{equation*}
$$

The integral restraint on the right-hand side of (38) is now satisfied identically and an acceptable solution for f_{2} is

$$
\begin{equation*}
f_{2}=\alpha_{2}^{*} \eta^{2}-\frac{2 \frac{1}{2} \alpha_{1} \eta^{3}}{6 a_{2}}-\frac{1}{15} \alpha_{1}^{* 2} \eta^{5} . \tag{41}
\end{equation*}
$$

Although α_{2}^{*} is apparently arbitrary at this stage, it has the prescribed role of ensuring the absence of exponentially large terms in f_{3}. If a precise value of α_{2}^{*} is to be ascertained we must proceed to examine

$$
\begin{gather*}
f_{3}^{\prime \prime \prime}-a_{2} \eta_{3}^{3} f_{3}^{\prime \prime}+7 a_{2} \eta^{2} f_{3}^{\prime}-12 a_{2} \eta f_{3}=-\theta_{3}-10 \alpha_{1}^{*} \alpha_{2}^{*} \eta^{2}+\frac{4}{3} \frac{2^{\frac{1}{2}} \alpha_{1}^{* 2} \eta^{3}}{a_{2}}-\frac{2^{\frac{1}{2}} \alpha_{2}^{*} \eta^{4}}{2}-\frac{4 \alpha_{1}^{* 3} \eta^{5}}{3} \tag{42}\\
\theta_{3}^{\prime \prime}-a_{2} \eta^{3} \theta_{3}^{\prime}+3 a_{2} \eta^{2} \theta_{3}=3.2^{\frac{1}{2}} \cdot \alpha_{2}^{*} \eta^{2}-\frac{2^{\frac{6}{2} \alpha_{1}^{* 2} \eta}}{a_{2}} \tag{43}
\end{gather*}
$$

Again G_{3}, H_{3} each display exponential behaviour at large η and only their appearance as the combination [(constant) K_{3}] can be countenanced. Once more the boundary condition $\theta_{3}^{\prime}(0)=0$, when applied to the general solution, requires that the constant be identically zero. The solution for θ_{3} is

$$
\begin{equation*}
\theta_{3}=\frac{2^{\frac{1}{2}} \alpha_{2}^{*}}{a_{2}}-\frac{2^{\frac{1}{2}} \alpha_{1}^{* 2} \eta^{3}}{3 a_{2}} \tag{44}
\end{equation*}
$$

As in the Goldstein analysis the solution for f_{3} has to allow for two complementary functions g_{3}, h_{3}, each of which displays exponential behaviour at large η (see appendix). However a particular combination (in Terrill's notation k_{3}) may be shown to behave algebraically. Imposing the condition that g_{3}, h_{3} appear only in such combination in
$f_{3}=\alpha_{3}^{*} \eta^{2}+\frac{4 \alpha_{1}^{*} \alpha_{2}^{*}}{\left(2 a_{2}\right)^{[}}\left[z-g_{3}(z)\right]-\frac{8 \alpha_{1}^{* 3}}{3\left(2 a_{2}\right)^{2}}\left[1+\frac{z^{4}}{4}-h_{3}(z)\right]-\frac{2 \frac{1}{2} \alpha_{2}^{*} \eta^{3}}{3\left(2 a_{2}\right)}+\frac{2 \frac{1}{2} \alpha_{1}^{* 2} \eta^{6}}{30} \quad\left(z=\left(2 a_{2}\right)^{\frac{1}{2}} \eta\right)$
thus prescribes

$$
\begin{equation*}
\alpha_{2}^{*}=\frac{2 \frac{1}{2} \alpha_{1}^{* 2} \pi^{\frac{3}{2}}}{\left(2 a_{2}\right)^{\frac{3}{2}} 5\left(\frac{1}{4}!!^{3}\right.} . \tag{45}
\end{equation*}
$$

In principle the solution may be pursued further and α_{3}^{*} obtained in like manner on examination of f_{4}. Unfortunately the presence of g_{3}, h_{3} in (45) severely complicates subsequent developments. The possible occurrence of inconsistencies may, however, be closely monitored by due consideration of integral restraints associated with termination of complementary functions. For the energy equation these occur at $\xi^{4 m}$ and $\xi^{4 m+1}$ levels in the expansions and for the momentum equation at $\xi^{4 m+1}$ and $\xi^{4 m+2}$ levels. Accordingly the first likely source of complication would arise at the ξ^{5} level
in the energy equation. A contribution from the complementary function at the ξ^{4} level which satisfies the zero derivative boundary condition at the wall together with algebraic behaviour at large η may be needed to allow satisfaction of the integral restraint at the ξ^{5} level. Clarification of this point would however be extremely arduous and is beyond the scope of this present paper. We proceed therefore to examine the level of agreement between the solutions as far as f_{2}, θ_{2}, and the numerical solution. Again we shall concentrate on the basic flow parameters of skin friction and heat transfer coefficients. Near separation, for skin friction coefficient correlation, we require

$$
\begin{align*}
\tau_{w} & =\frac{1}{(2 \tilde{5})^{\frac{1}{2}}}\left(\tilde{f}_{55}\right)_{\xi=0}=5^{\frac{1}{d}} \xi\left(f_{\eta \eta}\right)_{\eta=0} \\
& =5^{\frac{1}{3}}\left\{2 \alpha_{1}^{*} \xi^{2}+2 \alpha_{2}^{*} \xi^{3}+.\right\} \\
& =5^{\frac{1}{\frac{1}{2}}\left\{2 \alpha_{1}^{*}\left[\frac{\sigma^{\frac{\sigma^{\frac{2}{3}}}{2}}}{2}\left(\tilde{\xi}_{s}-\tilde{\xi}\right)\right]^{\frac{1}{2}}+2 \alpha_{2}^{*}\left[\frac{5^{\frac{2}{3}}}{2}\left(\tilde{\xi}_{s}-\tilde{\xi}\right)\right]^{\frac{\xi}{2}}+\ldots\right\}} \tag{47}
\end{align*}
$$

and for heat transfer coefficient correlation

$$
\begin{align*}
\widetilde{Q} & =\frac{-5^{\frac{1}{3}}}{2^{\frac{1}{2}}(\theta)_{\eta=0}} \\
& =\frac{-5^{\frac{1}{2}}}{2^{\frac{1}{2}}}\left\{b_{0}+\frac{2^{\frac{1}{2}} \alpha_{1}^{*} \xi^{2}}{a_{2}}+\frac{2^{\frac{1}{2}} \alpha_{2}^{*} \xi^{3}}{a_{2}}+\ldots\right\} \\
& =\frac{-5^{\frac{1}{3}}}{2^{\frac{1}{2}}}\left\{b_{0}+\frac{2^{\frac{1}{2}} \alpha_{1}^{*}}{a_{2}}\left[\frac{5^{\frac{2}{3}}}{2}\left(\tilde{\xi}_{s}-\tilde{\xi}\right)\right]^{\frac{1}{2}}+\frac{2^{\frac{1}{2}} \cdot \alpha_{2}^{*}}{a_{2}}\left[\frac{5^{\frac{2}{3}}}{2}\left(\tilde{\xi}_{s}-\tilde{\xi}\right)\right]^{\frac{3}{2}}+\ldots\right\} . \tag{48}
\end{align*}
$$

The left-hand sides of (47) and (48) are known from the numerical integration. The temperature at the wall at separation b_{0} is specifically evaluated by the numerical integration whereas α_{1}^{*} is chosen to reconcile the analytic and the numerical solution near separation. Note that (47) and (48) provide two independent means of estimating α_{1}^{*}.

5. Numerical procedure

The equations to be solved (Merkin 1969; Wilks 1974) are

$$
\left.\begin{array}{c}
\frac{\partial^{3} f}{\partial \zeta^{3}}+f \frac{\partial^{2} f}{\partial \zeta^{2}}+\lambda \theta+2 \xi^{\prime}\left(\frac{\partial^{2} f}{\partial \zeta^{2}} \frac{\partial f}{\partial \xi^{\prime}}-\frac{\partial f}{\partial \zeta} \frac{\partial^{2} f}{\partial \xi^{\prime} \partial \zeta}\right) \partial \zeta=0, \\
\frac{1}{P_{r}} \frac{\partial^{2} \theta}{\partial \zeta^{2}}+f \frac{\partial \theta}{\partial \zeta}-\mu \theta \frac{\partial f}{\partial \zeta}+2 \xi^{\prime}\left(\frac{\partial \theta}{\partial \zeta} \frac{\partial f}{\partial \xi^{\prime}}-\frac{\partial f}{\partial \zeta} \frac{\partial \theta}{\partial \xi^{\prime}}\right)=0 \tag{49}
\end{array}\right\}
$$

where for case (a) $\xi^{\prime}=\bar{\xi}, \lambda=-2, \mu=0$, and case (b) $\xi^{\prime}=\tilde{\xi}, \lambda=5 \tilde{\xi}^{\frac{z}{2}}, \mu=1$; subject to boundary conditions

$$
\begin{gathered}
f=\frac{\partial f}{\partial \zeta}=0,\left\{\begin{array}{l}
(a) \theta=1 \\
(b) \frac{\partial \theta}{\partial \zeta}=1
\end{array}\right\} \text { on } \zeta=0 \\
\frac{\partial f}{\partial \zeta} \rightarrow 1, \quad \theta \rightarrow 0 \text { as } \zeta \rightarrow \infty .
\end{gathered}
$$

These equations have been solved numerically using a method devised by Keller (Keller \& Cebeci 1971; Keller 1978). This method has advantages over the method used previously (Terrill 1960) in that the solution at $\xi^{\prime}=0$ is readily calculated, the method is unconditionally stable and principally that the method allows us to employ Richardson's extrapolation enabling us to obtain high accuracy using crude nets.

The equations are firstly recast into linear form by introducing the variables u, v and w defined as

$$
\begin{equation*}
\frac{\partial f}{\partial \zeta}=u, \quad \frac{\partial u}{\partial \zeta}=v, \quad \frac{\partial \theta}{\partial \zeta}=w . \tag{50a,b,c}
\end{equation*}
$$

The equations now read

$$
\begin{gather*}
\frac{\partial v}{\partial \eta}+f v+\lambda \theta+2 \xi^{\prime}\left\{u \frac{\partial u}{\partial \xi^{\prime}}-v \frac{\partial f}{\partial \xi^{\prime}}\right\}=0 \tag{51a}\\
\frac{1}{P_{r}} \frac{\partial w}{\partial \eta}+f w-\mu \theta w+2 \xi^{\prime}\left\{u \frac{\partial \theta}{\partial \xi^{\prime}}-w \frac{\partial f}{\partial \xi^{\prime}}\right\}=0 \tag{51b}
\end{gather*}
$$

and boundary conditions lead to

$$
\begin{gather*}
f=0, \quad u=0, \quad\left\{\begin{array}{ll}
(a) & \theta=1 \\
(b) & w=1
\end{array}\right\} \quad \text { at } \quad \eta=0 \tag{52}\\
u=1, \quad \theta=0
\end{gather*} \text { at } \eta=\infty . \quad .
$$

To discretize the equations we use a net which is non-uniform in ξ^{\prime} but uniform in η, defined as

$$
\left.\begin{array}{ll}
\xi_{0}^{\prime}=0, & \xi_{n}^{\prime}=\xi_{n-1}^{\prime}+k_{n} \quad(n=1,2, \ldots), \tag{53}\\
\zeta_{0}=0, & \zeta_{j}=\zeta_{j-1}+h \quad(j=1,2, \ldots, N),
\end{array}\right\}
$$

where the outer boundary ζ_{N} has been set at 7•2. If g_{j}^{n} denotes the value of any variable g at $\left(\xi_{n}^{\prime}, \eta_{j}\right)$, then variables and derivatives of equations (51) at $\left(\xi_{n-\frac{1}{2}}^{\prime}, \eta_{j-\frac{1}{2}}\right)$ are replaced by

$$
\begin{aligned}
g_{j-\frac{1}{2}}^{n-\frac{1}{2}} & =\frac{1}{4}\left(g_{j}^{n}+g_{j-1}^{n}+g_{j}^{n-1}+g_{j-1}^{n-1}\right), \\
{\left[\frac{\partial g}{\partial \xi^{\prime}}\right]_{j-\frac{1}{2}}^{n-\frac{1}{2}} } & =\frac{1}{2 k_{n}}\left(g_{j}^{n}+g_{j-1}^{n}-g_{j}^{n-1}-g_{j-1}^{n-1}\right), \\
{\left[\frac{\partial g}{\partial \zeta}\right]_{j-\frac{1}{2}}^{n-\frac{1}{2}} } & =\frac{1}{2 h}\left(g_{j}^{n}+g_{j}^{n-1}-g_{j-1}^{n}-g_{j-1}^{n-1}\right),
\end{aligned}
$$

where $\xi_{n-\frac{1}{2}}^{\prime}=\xi_{n-1}^{\prime}+\frac{1}{2} k_{n}$ and $\eta_{j-\frac{1}{2}}=\eta_{j-1}+\frac{1}{2} h$. Equations (50) are centred at $\left(\xi_{n}^{\prime}, \eta_{j-\frac{1}{2}}\right)$ and we therefore use

$$
\begin{equation*}
g_{j-\frac{1}{2}}^{n}=\frac{1}{2}\left(g_{j}^{n}+g_{j-1}^{n}\right), \quad\left[\frac{\partial g}{\partial \xi}\right]_{j-\frac{1}{2}}^{n}=\frac{1}{h}\left(g_{j}^{n}-g_{j-1}^{n}\right) . \tag{54}
\end{equation*}
$$

The boundary conditions (52) are then

$$
f_{0}^{n}=0, \quad u_{0}^{n}=0, \quad\left\{\begin{array}{cc}
(a) & \theta_{0}^{n}=1, \\
(b) & w_{0}^{n}=1,
\end{array}\right\} \quad u_{N}^{n}=1, \quad \theta_{N}^{n}=0 .
$$

If we suppose we have solved the problem up to ξ_{n-1}, then we have $5 N$ equations plus 5 boundary conditions for the $5 N+5$ unknowns $\left(f_{j}^{n}, u_{j}^{n}, v_{j}^{n}, \theta_{j}^{n}, w_{j}^{n}\right) j=0,1, \ldots, N$. These are nonlinear algebraic equations which are solved using Newton's iteration, the values of the variables at ξ_{n-1}^{\prime} being using as an initial iterate. At $\xi^{\prime}=0$ the equations (51) have
only η derivatives and are discretized using (54). The resulting algebraic equations are again solved by Newton's iteration.

As we approach separation (i.e. $v=0$), the value of k_{n} is determined from the two most recent values of v at $\eta=0$, namely v_{0}^{n-1} and v_{0}^{n-2}. If we assume that v_{0}^{n} is approximately proportional to $\left(\xi_{s}^{\prime}-\xi_{n}^{\prime}\right)^{\frac{1}{2}}$ as we approach separation (where ξ_{s}^{\prime} is the position of separation) then we can estimate ξ_{s}^{\prime} from v_{0}^{n-1} and v_{0}^{n-2}, and after some algebra we find

$$
\xi_{s}^{\prime}-\xi_{n-1}^{\prime}=\frac{k_{n-1}\left(v_{0}^{n-1}\right)^{2}}{\left(v_{0}^{n-2}\right)^{2}-\left(v_{0}^{n-1}\right)^{2}}
$$

Hence by choosing k_{n} to be $\frac{1}{2}\left(\xi_{s}^{\prime}-\xi_{n-1}^{\prime}\right)$ as given by this estimate, one is able to approach separation by continuously halving the distance to separation.

Each cell of the net (53) is divided into $2 m$ equal subintervals in the ξ direction and m subintervals in η producing a finer net having cell dimensions $k_{n} / 2 m$ and h / m where m is an integer. The program was run for values of $m=2,3$ and 4 , having set $N=10$, and Richardson's extrapolation is employed in order to obtain results of higher accuracy. Since the truncation error is a power series in the square of $k / 2 m$ and h / m (where $k=\max _{n} k_{n}$) the final result will have truncation error $O\left(h^{6}+k^{6}\right)$. It should be appreciated that the calculated separation point ξ_{s}^{\prime} will have error $O\left((h / 2 m)^{2}+(k / m)^{2}\right)$, and again Richardson's extrapolation is used to find a more accurate value. The intermediate values ξ_{n}^{\prime} will similarly vary and are treated in an analogous manner. The values of ξ_{s}^{\prime} given by Merkin (1969) and Wilks (1974) contain an error $O\left(h^{2}\right)$ and differ from our results, which being $O\left(h^{6}\right)$ are substantially more accurate.

In order to assess accuracy a further run was made setting $m=1$. The results for $m=1,2$ and 3 were used to obtain a further set of results $O\left(h^{6}+k^{6}\right)$ which were used to test the accuracy of the original set.

6. Numerical results

The numerical results obtained are accurate to approximately 6 decimal places except for the temperature gradient w in case (a) within 10^{-4} of separation (at distances of 10^{-5} to 10^{-4} to separation the accuracy in w is about 3 or 4 decimal places). Because of the exponential growth in the ertor of w as separation is approached in case (a) the program failed to converge at distances less than 5×10^{-6} to separation. However in case (b) no such difficulty is encountered and in fact separation was approached to within $10^{-8} . \dagger$

Tables 1 and 2 show the values of the flow parameter for values of ξ^{\prime} up to separation for cases (a) and (b) respectively, where $\tau_{w}=(v)_{\eta=0} / \sqrt{ }\left(2 \xi^{\prime}\right)$ is the skin friction coefficient (column 2) and $\bar{Q}=-(w)_{\eta=0} / \sqrt{ }(2 \bar{\xi})$ and $\widetilde{Q}=-1 /\left((\theta)_{\eta=0} \sqrt{ }(2 \tilde{\xi})\right)$ are the heat transfer coefficients for cases (a) and (b) respectively (column 4). The separation points ξ_{s}^{\prime} are estimated as the point where an extrapolation of τ_{w}^{2} becomes zero and are found to be
(a) $\bar{\xi}_{s}=0.192217$,
(b) $\tilde{\xi}_{s}=0.14157699$,
and are accurate to the number of decimal places quoted as are all results in this paper. At this point we find
(a) $\bar{Q} \rightarrow 0 \cdot 423$,
(b) $\tilde{Q} \rightarrow 0.952068$.
\dagger There would be no difficulty in getting closer.

$\bar{\xi}$	τ_{w}	τ_{w} (series)	\bar{Q}	\bar{Q} (series)
0.040000	1.422990	0.48471	1.601885	0.6808
0.063220	1.015370	0.43969	1.243449	0.6667
0.085005	0.776127	0.39484	1.044480	0.6522
0.104984	0.611073	0.35067	0.913782	0.6373
0.122953	0.486878	0.30748	0.819449	0.6220
0.138726	0.388808	0.26568	0.747395	0.6065
0.152162	0.309331	0.22583	0.690355	0.5906
0.163205	0.244219	0.18859	0.644185	0.5747
0.171917	0.190889	0.15461	0.606334	0.5590
0.178490	0.147573	0.12446	0.575115	0.5437
0.183227	0.112860	0.09848	0.549320	0.5291
0.186495	0.085472	0.07674	0.528012	0.5156
0.188662	0.064194	0.05901	0.510424	0.5032
0.190053	0.047888	0.04489	0.495910	0.4920
0.190920	0.035533	0.03384	0.483929	0.4821
0.191450	0.026255	0.02532	0.474026	0.4734
0.191768	0.019337	0.01884	0.465829	0.4659
0.191956	0.014206	0.01395	0.459030	0.4593
0.192067	0.010416	0.01029	0.453380	0.4537
0.192131	0.007626	0.00756	0.448670	0.4489
0.192168	0.005577	0.00554	0.444737	0.4448
0.192189	0.004074	0.00404	0.441450	0.4413
0.192201	0.002974	0.00294	0.438698	0.4383
0.192208	0.002166	0.00218	0.436562	0.4360
0.192212	0.001577	0.00160	0.434765	0.4339

Table 1

The flow parameters τ_{w} and \bar{Q} for case (a) were matched to the series solution at separation (equations (22) and (23)) to determine the parameters α_{11} and b_{1}. For any given $\bar{\xi}$ one may use (22) and (23) to obtain these parameters and if the series solution and the numerical solution are consistent then the values obtained for α_{11} and b_{1} should not vary with ξ. This is indeed the case, thus the numerical results confirm the validity of the series obtained. Choosing the parameters such that (22) has error $O\left(\left(\bar{\xi}_{s}-\bar{\xi}\right)^{\frac{1}{3}}\right)$ and $(23) O\left(\left(\bar{\xi}_{s}-\bar{\xi}\right)^{\frac{1}{2}}\right)$ gave

$$
\alpha_{11}=0.436, \quad b_{1}=-0.598
$$

Using these values gave series solution values for τ_{w} and $\bar{\theta}$ as shown in columns (3) and (5) of table 1 . Notice that b_{1} is negative, consistent with temperature decrease away from the wall. Nevertheless very satisfactory matching is achieved in the context of the Buckmaster theory despite the implications that this has on the skin friction estimates extremely close to separation. Similar paradoxical conclusions were reached by Davies \& Walker for hot walls. Moreover, if the flow envisaged is converted to its counterpart of a cold wall in a heated stream, exactly the same equations and results obtain. Note that in this latter case $b_{1}<0$ is not inconsistent with temperature increase away from the wall since the temperature decreases or increases in accordance with the positive or negative nature of ($T_{1}-T_{0}$).
In a similar fashion the parameters α_{1}^{*} and b_{0} of equations (47) and (48) for case (b) can be determined using τ_{w} and \tilde{Q} in table 2 . It was found that b_{0} could be assessed very

$\tilde{\xi}$	τ_{w}	τ_{w} (series)	\tilde{Q}	\tilde{Q} (series)
0.04000000	1.509 968	0.876311	$2 \cdot 261140$	1.728940
$0 \cdot 06820828$	1.003261	0.727287	1.695 565	1.518258
0.08891891	0.746687	0.602242	1.452104	1.377421
$0 \cdot 10500596$	0.568585	$0 \cdot 490215$	1.304720	$1 \cdot 271732$
$0 \cdot 11716608$	0.433492	$0 \cdot 390900$	$1 \cdot 205296$	$1 \cdot 190735$
$0 \cdot 12592894$	0.328306	$0 \cdot 305360$	$1 \cdot 135105$	1-128812
$0 \cdot 13191732$	0.246379	0.234141	1.084599	$1 \cdot 081966$
$0 \cdot 13580652$	0.183237	$0 \cdot 176758$	1.048016	1.046958
$0 \cdot 13822288$	$0 \cdot 135216$	$0 \cdot 131799$	$1 \cdot 021478$	1.021073
$0 \cdot 13967067$	0.099141	0.097337	1.002229	1.002082
$0 \cdot 14051340$	$0 \cdot 072307$	0.071353	0.988274	0.988224
$0 \cdot 14099266$	0.052505	0.051999	0.978164	0.978148
$0 \cdot 14126008$	0.037988	0.037720	0.970851	0.970845
$0 \cdot 14140701$	0.027402	0.027258	0.965566	0.965564
$0 \cdot 14148672$	0.019711	0.019632	0.961752	0.961750
$0 \cdot 14152945$	0.014144	0.014102	0.959005	0.959002
$0 \cdot 14155213$	0.010130	0.010107	0.957030	0.957028
$0 \cdot 14156407$	0.007242	0.007229	0.955612	0.955611
$0 \cdot 14157032$	0.005170	0.005163	0.954596	0.954595
0.14157356	0.003685	0.003081	0.953870	0.953868
$0 \cdot 14157523$	0.002624	0.002620	0.953350	0.953349
0.14157610	0.001865	0.001863	0.952979	0.952978
0.14157654	0.001327	$0 \cdot 001324$	0.952716	0.952715
$0 \cdot 14157676$	$0 \cdot 000940$	$0 \cdot 000939$	0.952527	0.952527
$0 \cdot 14157687$	$0 \cdot 000672$	0.000667	0.952396	0.952394
$0 \cdot 14157693$	0.000472	0.000466	$0 \cdot 952.299$	0.952296
$0 \cdot 14157696$	$0 \cdot 000331$	$0 \cdot 000329$	$0 \cdot 952230$	0.952229
$0 \cdot 14157698$	$0 \cdot 000241$	0.000239	0.952186	0.952185
$0 \cdot 14157698$	$0 \cdot 000166$	0.000166	0.952149	0.952149
$0 \cdot 14157699$	$0 \cdot 000123$	$0 \cdot 000122$	0.952128	0.952128
Table 2				

accurately by using (47) to eliminate α_{1}^{*} and α_{2}^{*} from (48) and considering small values of $\left(\tilde{\xi}_{s}-\tilde{\xi}\right)$. It was found that

$$
b_{0}=-1 \cdot 270010
$$

Having determined b_{0}, α_{1}^{*} could be assessed either from τ_{w} or \tilde{Q} at each position $\tilde{\xi}$. It was found that α_{1}^{*} was remarkably constant with $\tilde{\xi}$ and gave the same result from both τ_{w} and \widetilde{Q}, corroborating the series solution to a high degree of accuracy; α_{1}^{*} was determined such that the error in (47) and (48) is $O\left(\tilde{\xi}_{s}-\tilde{\xi}\right)$ and is

$$
\left.\alpha_{1}^{*}=0.4653 \text { (using } \tau_{w} \text {), } \quad \alpha_{1}^{*}=0.4651 \text { (using } \tilde{Q}\right) .
$$

Taking α_{1}^{*} to be 0.4652 and b_{0} as given gave series solution values for τ_{w} and \tilde{Q}, see table 2.

7. Conclusion

It has been demonstrated that a clear distinction exists between the singularities in mixed convection boundary-layer separation associated with the uniform temperature and uniform heat flux boundary condition respectively. The relatively straightforward
asymptotic structure about the singularity occurring in the uniform heat flux case demonstrates that Buckmaster expansions are not an inherent feature of the coupling of the momentum and energy equations. This same relative straightforwardness recommends the uniform heat flux case as the natural one to examine, in the first instance, when attempts are made subsequently to embed the analysis evidenced here into an investigation of separation in the context of the full Navier-Stokes equations.

Appendix

Complementary functions play a significant role in developing consistent series solutions. We present here a summary of the complementary functions and their properties, associated with the operators arising from the momentum and energy equations.

The homogeneous differential equation whose solutions are relevant to the stream functions f_{n} is

$$
\dddot{f_{n}}-\frac{1}{2} z^{3} \ddot{f}_{n}+\frac{1}{2}(n+4) z^{2} \dot{f}_{n}-(n+3) z f_{n}=0,
$$

where the dots indicate differentiation with respect to z. Complementary functions are $z^{2}, h_{n}(z), g_{n}(z)$ (see Goldstein 1948); $h_{n}(0)=1, g_{n}(0)=0 ; \dot{h}_{n}(0)=0, \dot{g}_{n}(0)=1$. When $n=4 m+1$ the series representation of $h_{n}(z)$ terminates, whilst that of $g_{n}(z)$ terminates when $n=4 m+2$, for m a positive integer or zero. Otherwise $h_{n}(z), g_{n}(z)$ each display exponential behaviour at large z. However when $n \neq 4 m+1,4 m+2$ the combination

$$
k_{n}=h_{n}+\frac{2 \frac{1}{2}\left(-\frac{5}{4}\right)!\left(-\frac{3}{2}-\frac{1}{4} n\right)!}{\left(-\frac{3}{4}\right)!\left(-\frac{7}{4}-\frac{1}{4} n\right)!} g_{n}
$$

behaves algebraically for large z and has the value unity at the origin.
In the development of the temperature function θ_{n} the relevant equation is

$$
\ddot{\theta}_{n}-\frac{1}{2} z^{3} \dot{\theta}_{n}+\frac{1}{2} n z^{2} \theta_{n}=0
$$

Series solutions are

$$
H_{n}(z)=M\left(-\frac{n}{4}, \frac{3}{4} ; \frac{z^{4}}{8}\right), \quad G_{n}(z)=z M\left(\frac{1-n}{4}, \frac{5}{4} ; \frac{z^{4}}{8}\right)
$$

where $H_{n}(0)=1, \dot{H}_{n}(0)=0 ; G_{n}(0)=0, \dot{G}_{n}(0)=1$ and $M(a, b ; z)$ is Kummer's confluent hypergeometric function. The series representation of $H_{n}(z)$ terminates when $n=4 m$ whilst that of $G_{n}(z)$ terminates when $n=4 m+1$. Otherwise $H_{n}(z), G_{n}(z)$ each display exponential behaviour at large Z. When $n \neq 4 m, 4 m+1$ the combination

$$
K_{n}=H_{n}-\frac{\left(-\frac{1}{4}\right)!\left(-\frac{1}{4} n-\frac{3}{4}\right)!}{\left(\frac{1}{4}\right)!\left(-1-\frac{1}{4} n\right)!8^{2}} G_{n}
$$

behaves algebraically for large z and has the value unity at the origin.

REFERENCES

Buckmaster, J. 1970 The behaviour of a laminar compressible boundary layer on a cold wall near a point of zero skin friction. J. Fluid Mech. 44, 237.
Davies, T. \& Walker, G. 1977 On solutions of the compressible laminar boundary layer equations and their behaviour near separation. J. Fluid Mech. 80, 279.

Goldstern, S. 1930 Concerning some solutions of the boundary-layer equations in hydrodynamics. Proc. Camb. Phil. Soc. 26, 1.
Goldstein, S. 1948 On laminar boundary layer flow near a position of separation. Quart. J. Mech. Appl. Math. 1, 43.
Keller, H. B. 1978 Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417.

Keller, H. B. \& Cebect, T. 1971 Accurate numerical methods for boundary layer flows I. Two dimensional laminar flows. Proc. 2nd Int. Conf. Numer. Meth. Fluid Dyn., Berkeley, California.
Merkin, J. H. 1969 The effect of buoyancy forces on the boundary layer flow over a semiinfinite vertical flat plate in a uniform stream. J. Fluid Mech. 35, 439.
Stewartson, K. 1958 On Goldstein's theory of laminar separation. Quart. J. Mech. Appl. Math. 13, 57.
Stewartson, K. 1962 The behaviour of a laminar compressible boundary layer near a point of zero skin friction. J. Fluid Mech. 12, 117.
Terrill, R. M. 1960 Laminar boundary layer flow near separation with and without suction. Phil. Trans. Roy. Soc. A 235, 55.
Wilks, G. 1974 A separated flow in mixed convection. J. Fluid Mech. 62, 359.

